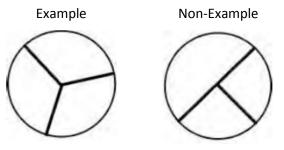
THIRD GRADE MATHEMATICS UNIT 5 STANDARDS


Dear Parents,

We want to make sure that you have an understanding of the mathematics your child will be learning this year. Below you will find the standards we will be learning in Unit Five. Each standard is in bold print and underlined and below it is an explanation with student examples. Your child is not learning math the way we did when we were in school, so hopefully this will assist you when you help your child at home. Please let your teacher know if you have any questions.

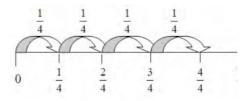
MGSE3.NF.1 Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.

This standard refers to the sharing of a whole being partitioned or split. Fraction models in third grade include area (parts of a whole) models (circles, rectangles, squares) and number lines. Set models (parts of a group) are not introduced in Third Grade. In 3.NF.1 students should focus on the concept that a fraction is made up (composed) of many pieces of a unit fraction, which has a numerator of 1. For example, the fraction 3/5 is composed of 3 pieces that each have a size of 1/5.

Some important concepts related to developing understanding of fractions include:

These are thirds.

These are NOT thirds.


- Understand fractional parts must be equal-sized.
- The number of equal parts tells how many make a whole.
- As the number of equal pieces in the whole increases, the size of the fractional pieces decreases.
- The size of the fractional part is relative to the whole.
- The number of children in one-half of a classroom is different than the number of children in one-half of a school. (The whole in each set is different; therefore, the half in each set will be different.)
- When a whole is cut into equal parts, the denominator represents the number of equal parts.
- The numerator of a fraction is the count of the number of equal parts.
 - o ¾ means that there are 3 one-fourths.
 - Students can count *one fourth, two fourths, three fourths.* Students express fractions as fair sharing, parts of a whole, and parts of a set. They use various contexts (candy bars, fruit, and cakes) and a variety of models (circles, squares, rectangles, fraction bars, and number lines) to develop understanding of fractions and represent fractions. Students need many opportunities to solve word problems that require fair sharing.

MGSE3.NF.2 Understand a fraction as a number on the number line; represent fractions on a number line diagram.

- a. Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line.
- b. Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.

The number line diagram is the first time students work with a number line for numbers that are between whole numbers (e.g., that . is between 0 and 1).

In the number line diagram below, the space between 0 and 1 is divided (partitioned) into 4 equal regions. The distance from 0 to the first segment is 1 of the 4 segments from 0 to 1 or . (MCC.3.NF.2a). Similarly, the distance from 0 to the third segment is 3 segments that are each one-fourth long. Therefore, the distance of 3 segments from 0 is the fraction . (MCC.3.NF.2b).

MGSE.3.NF.3 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.

An important concept when comparing fractions is to look at the size of the parts and the number of the parts. For example, 1/8 is smaller than 1/2 because when 1 whole is cut into 8 pieces, the pieces are much smaller than when 1 whole is cut into 2 pieces.

a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. b. Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.

These standards call for students to use visual fraction models (area models) and number lines to explore the idea of equivalent fractions. Students should only explore equivalent fractions using models, rather than using algorithms or procedures.

c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. *Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.*

This standard includes writing whole numbers as fractions. The concept relates to fractions as division problems, where the fraction 3/1 is 3 wholes divided into one group. This standard is the building block for later work where students divide a set of objects into a specific number of groups. Students must understand the meaning of a/1.

Example: If 6 brownies are shared between 2 people, how many brownies would each person get?

d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

This standard involves comparing fractions with or without visual fraction models including number lines. Experiences should encourage students to reason about the size of pieces, the fact that 1/3 of a cake is larger than 1/4 of the same cake. Since the same cake (the whole) is split into equal pieces, thirds are larger than fourths.

In this standard, students should also reason that comparisons are only valid if the wholes are identical. For example, 1/2 of a large pizza is a different amount than 1/2 of a small pizza. Students should be given opportunities to discuss and reason about which 1/2 is larger.

Common Misconceptions

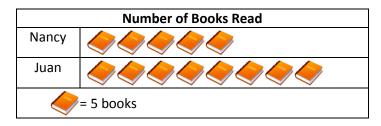
The idea that the smaller the denominator, the smaller the piece or part of the set, or the larger the denominator, the larger the piece or part of the set, is based on the comparison that in whole numbers, the smaller a number, the less it is, or the larger a number, the more it is. The use ofdifferent models, such as fraction bars and number lines, allows students to compare unit fractions to reason about their sizes.

Students think all shapes can be divided the same way. Present shapes other than circles, squares or rectangles to prevent students from overgeneralizing that all shapes can be divided the same way. For example, have students fold a triangle into eighths. Provide oral directions for folding the triangle:

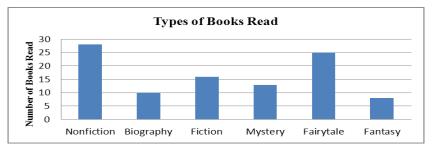
1. Fold the triangle into half by folding the left vertex (at the base of the triangle) over to meet the right vertex.

2. Fold in this manner two more times.

3. Have students label each eighth using fractional notation. Then, have students count the fractional parts in the triangle (one-eighth, two-eighths, three-eighths, and so on).


MGSE.3.MD.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. This standard continues throughout the third grade year.

Students should have opportunities reading and solving problems using scaled graphs before being asked to draw one. The following graphs all use five as the scale interval, but students should experience different intervals to further develop their understanding of scale graphs and number facts. While exploring data concepts, students should **P**ose a question, **C**ollect data, **A**nalyze data, and Interpret data (PCAI). Students should be graphing data that is relevant to their lives. Example:


Pose a question: Student should come up with a question. What is the typical genre read in our class?

Collect and organize data: student survey

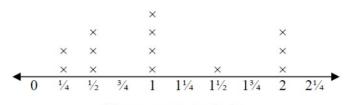
<u>Pictographs</u>: Scaled pictographs include symbols that represent multiple units. Below is an example of a pictograph with symbols that represent multiple units. Graphs should include a title, categories, category label, key, and data. How many more books did Juan read than Nancy?

<u>Single Bar Graphs</u>: Students use both horizontal and vertical bar graphs. Bar graphs include a title, scale, scale label, categories, category label, and data.

Analyze and Interpret data:

- How many more nonfiction books where read than fantasy books?
- Did more people read biography and mystery books or fiction and fantasy books?
- About how many books in all genres were read?
- Using the data from the graphs, what type of book was read more often than a mystery but less often than a fairytale?
- What interval was used for this scale?
- What can we say about types of books read? What is a typical type of book read?
- If you were to purchase a book for the class library which would be the best genre? Why?

MGSE3.MD.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units – whole numbers, halves, or quarters.


This standard continues throughout the third grade year.

Students in second grade measured length in whole units using both metric and U.S. customary systems. It is important to review with students how to read and use a standard ruler including details about halves and quarter marks on the ruler. Students should connect their understanding of fractions to measuring to one-half and one-quarter inch. Third graders need many opportunities measuring the length of various objects in their environment. This standard provides a

context for students to work with fractions by measuring objects to a quarter of an inch. Example: Measure objects in your desk to the nearest ½ or ¼ of an inch, display data collected on a line plot.

How many objects measured ¼? ½? etc. ...

Objects on My Desk

Measurements in Inches